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A review of Winkler’s foundation and its profound
influence on adhesion and soft
matter applications

David A. Dillard, *a Bikramjit Mukherjee, b Preetika Karnal, c

Romesh C. Batra a and Joelle Frechette c

Few advanced mechanics of materials solutions have found broader and more enduring applications

than Emil Winkler’s beam on elastic foundation analysis, first published in 1867. Now, 150 years after its

introduction, this concept continues to enjoy widespread use in its original application field of civil

engineering, and has also had a profound effect on the field of adhesion mechanics, including for soft

matter adhesion phenomena. A review of the model is presented with a focus on applications to

adhesion science, highlighting classical works that utilize the model as well as recent usages that extend

its scope. The special case of the behavior of plates on incompressible (e.g., elastomeric and viscous

liquid) foundations is reviewed because of the significant relevance to the behavior of soft matter

interlayers between one or more flexible adherends.

1. Introduction

Peel stresses, those normal stresses perpendicular to the adhe-
sive layer or bond plane, have long been considered the nem-
esis of adhesive bonds and a dominant cause of debonding for
other adhesion phenomena. These opening mode stresses tend
to pull bonds apart and prevent opportunities for rebonding, as
can occur when shear or sliding takes place at soft material
interfaces. Associated with mode I fracture, which is often
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considered to require the smallest energy release rates for
failure in monolithic and layered systems, peeling action
opens pathways for moisture ingression and can facilitate
penetration of other materials that reduce adhesion or other-
wise degrade bonded systems. Perhaps no closed-form,
mechanics of materials solution has had more impact on
the field of adhesion and adhesive bonding than the under-
standing obtained when peel stresses are assessed by assum-
ing adherend beams (or plates) are supported by an elastic
foundation associated with the adhesive interlayer. Originally
proposed for civil engineering applications, Winkler’s beam
(and by extension, plate) on elastic foundation solution has
proven invaluable for myriad applications including tubular
structures, hydrostatic support of floating plates, and adhe-
sive bonds. Adhesion-related solutions include assessing peel
stresses within lap joint configurations, peeling of pressure
sensitive tapes, and fracture of laminated material systems.
When appropriately modified to account for foundation
incompressibility, this solution can accurately be extended
to situations involving a viscous liquid or a soft elastomer.

These modifications have been widely employed in modeling
soft matter adhesion phenomena including cavitation and
fingering instabilities, patterned adhesion, removal of plates
from viscous liquids, and debonding behavior in biological
and biomimetic problems.

2017 marked the 150th anniversary of Emil Winkler’s
seminal publication of the beam on elastic foundation (BoEF)
solution,1 published in 1867 while he was a professor at the
University of Prague. With wide-ranging interests in analysis
of civil engineering structures, he initially proposed the BoEF
model for the rather obvious application to sleepers and rails
supported by the earth upon which they rest.2 The essence of
the model lies in the simple but profound assumption that
the restoring force, q, of an elastic foundation is linearly
proportional to the deflection w it sustains, according to
q = kw. The important resulting mechanics of materials
solution has been applied to a wide range of engineering
problems, including a plethora of discrete and continuous
loading and boundary conditions, extensions to plates and
pontoon bridges, and nonlinear behavior. The analysis has
even been extended to determine deflections and stresses in
pressurized cylindrical tanks, where the effective restoring
force is not supplied by a separate medium but rather by
the hoop stresses developed due to stretching of the curved
walls.3 Although variational forms will be discussed briefly
in a subsequent section, the equilibrium formulation for an
Euler–Bernoulli beam (illustrated in Fig. 1a and b) results in
a governing differential equation (GDE) and the characteristic
reciprocal length lw of

d4w

dx4
¼ p� q

EI
) d4w

dx4
þ 4lw4w ¼

p

EI

lw ¼
ffiffiffiffiffiffiffiffi
k
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where w is also the beam deflection, p is the applied (per unit
length along beam) lateral loading,† E and I are, respectively,
Young’s modulus and second moment of area of the beam about
its neutral axis, and k is the elastic foundation stiffness (force per
unit displacement per unit length of beam).

The complimentary solution of the GDE involves exponen-
tially varying, sinusoidal undulations of the form:

w(x) = C1e�lwx cos lwx + C2e�lwx sin lwx + C3elwx cos lwx

+ C4elwx sin lwx (2)

where C1, C2, C3, and C4 are the integration constants deter-
mined from problem-specific boundary and/or continuity con-
ditions. As can be seen in its definition given above, the
characteristic length scale lw

�1 represents the deformability
of the foundation relative to that of the beam. As one can see
from (2), the reciprocal length governs the decay rate (from the
point of load application) and the period of the oscillations.
It corresponds to the exponential decay length in a similar
manner that the shear lag distance is defined in the Volkersen
solution.4 The rapid decay rate relative to the oscillation period
means that the oscillations become negligible after several
characteristic lengths; 5lw

�1 is the traditional definition of a
‘‘short beam’’ for BoEF solutions.5 It is tacitly assumed here
that, during the deformation process, there is no separation

between the deformed beam and the foundation and that
neighboring particles of the foundation deform independently
of each other. Furthermore, the bending-induced axial dis-
placements at the beam surface are neglected in the Winkler
formulation (and most extensions, including all those dis-
cussed herein).

From its introduction, Winkler’s BoEF approach found
widespread applications as well as numerous extensions.
Biot6 took exception with Winkler’s solution in 1937, arguing
that the foundation model applicability was rather limited,
effectively because it applied to a layered system (beam atop a
foundation layer atop a rigid substrate). Biot’s interesting
development extended the solution to the case where the
foundation is a half-space and the applied load is sinusoidal,
resulting in a foundation stiffness that effectively became a
function of the spatial frequency of the applied load. His
analysis would later find widespread applications for surface
layer wrinkling analysis, where the surface layer thickness is
small compared to that of the underlying material.

Hetényi3 presented solutions for a very wide range of
BoEF geometries and loading cases, including applications to
cylindrical pressure vessels, torsion, and buckling, in his classic
1946 monograph. Apparently largely based on his dissertation
and postdoc tenure with Timoshenko a decade earlier, this
source remains a thorough and seminal work illustrating some
of the many outcomes of Winkler’s foundation predictions.

Winkler’s foundation is easily extended to a generalized
formulation for plates (shown in Fig. 1c) by using a similar,
spatially varying restoring force (per unit area):r4w = ( p � q)/D,

Fig. 1 Illustrations of configurations and sign conventions for: (a) simple beam on elastic foundation subjected to lateral loading, (b) free body diagram of
a differential beam element including moment M and transverse shear V, (c) plate on elastic foundation, and (d) plate supported by a liquid of density rf.

† Note that here and elsewhere throughout the paper, p is the externally applied
mechanical loading. The zero deflection reference state is assumed to coincide
with any deflection resulting after the linear (for beam) or areal (for plate) self
weight is applied.
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where D = Etp
3/12(1 � np

2) is the plate bending rigidity,
with modulus of E, Poisson’s ratio of np and thickness tp,

r4w = r2(r2w) and r2 ¼ @2

@x2
þ @2

@y2
. (Note that in moving from

beam to plate solutions, as covered in remainder of the paper,
p, q, and k all are per unit area rather than per unit length.)
Again, making the Winkler assumption that q = kw results in:

r4wþ 4lw4w ¼
p

D

lw ¼
ffiffiffiffiffiffiffi
k

4D

4

r (3)

To avoid plate stretching due to Gaussian curvature changes,
we re-emphasize the need for small displacements (w o t) and
initially flat plates. Assuming that a point on the foundation
deforms independently of its neighbors, the foundation stiff-
ness may be taken as k = Ea/h, where Ea is Young’s modulus‡ of
the foundation (or adhesive interlayer, as will be important
in much of the paper) and h is its thickness. According to
Timoshenko and Woinowsky-Krieger,7 early contributions to
the plate solution and applications are due to Hertz8,9 and
Föppl,10 and also note that Hertz’s analysis was for a floating
plate, where the spring constant results not from an elastic
property, but rather from the hydrostatic pressure based on the
weight of the displaced liquid column upon which it rests. In a
generalized form the hydrostatic forces are incorporated,
resulting in the same GDE as in (3), but with k = rfg, where rf

is the density of the liquid, and g is gravitational acceleration,
as illustrated in Fig. 1d.

Plane strain (cylindrical, or plane stress of narrow beam)
bending has been widely analyzed and is commonly used in
experiments reported in the literature, including for adhesion
applications, so will be the focus of this paper. This avoids
changes in Gaussian curvature and concomitant stretching; the
GDE simplifies to:

d4w

dx4
þ 4lw4w ¼

p

D
(4)

The remainder of the paper will build on this background,
reviewing in Section 2 some classical and recent applications of
the BoEF to the predictions of stresses within adhesive bonds
and layered systems, and to modeling fracture within beam-like
monolithic and layered specimens. With particular interest in
the modifications required to adapt the BoEF approach to
situations involving soft matter interlayers, including elastomers
and fluids where coupling effects become important, we then
briefly review the history of BoEF modifications involving other
classic coupling effects in Section 3. The development and applica-
tions of the modified BoEF solution for soft matter interlayers is
presented in Section 4, where interlayer incompressibility dictates

a specific form of coupling resulting in 6th order rather than 4th
order GDEs, contrasting their differences on the predicted stress
fields. Section 5 then outlines the analogous solution including
hydrostatic and hydrodynamic contributions for viscous fluids.
Prior to the Conclusion, Section 6 summarizes the key solutions
presented, and adds assumptions and requirements for key
equations. Throughout the manuscript, numerous applications
to soft elastomer and viscous fluids are both included, with
relevance to pressure sensitive adhesives, soft gel adhesion, release
technology, a range of biological adhesion phenomena, and
biomimetic configurations.

2. Applications to adhesion

Of particular interest to the adhesion community has been the
varied adaptations of Winkler’s model to the field of adhesion,
where it ranks with Volkersen’s 1938 shear lag model4 in both
importance and versatility in modeling and explaining stress
states in bonded systems. The long list of applications of the
Winkler foundation to adhesion apparently began with Goland
and Reissner’s 1944 analysis11 of the stresses within single lap
joints, in which they recognized the significant influence that
adherend bending, associated with eccentric loading, imposed
on the resulting stress state within the bondline. Considering
the adhesive layer as relatively more extensible in the out of
plane direction than the adherends, the adhesive layer was
effectively modelled as an elastic foundation supporting the
two adherends. The assumption is analogous to that of the
shear lag model, which they incorporated for assessing
the shear stress distribution. In spite of the simplifying
assumptions made, Goland and Reissner’s model combining
shear lag and BoEF effects accurately predicts the bondline
shear and peel stresses for a range of practical adhesive joints,
often closely matching more sophisticated analytical or numerical
solutions for common joint configurations. In 1956 Lubkin and
Reissner12 extended this lap joint analysis to tubular lap joints,
augmenting the adhesive foundation stiffness with the radial
constraint provided by circumferential stretching of the cylindrical
tubes, as noted earlier.3 Other direct applications of the BoEF
model include the more recent analysis of stresses between
adherends with a curvature mismatch, including constant13 and
varying14 mismatch cases, as well as curvature optimization to
minimize detrimental peel stresses and edge lift.15 In all of these
analyses, the foundation stiffness is assumed to be based on that
of the adhesive interlayer, which is typically of the same width as
the adherends, but can also be narrower, with appropriate stiffness
scaling.

Extensions of the BoEF concept to debonding and fracture
mechanics applications, including the above mentioned ana-
lyses, can be easily accomplished by effectively shortening the
foundation-supported length and extending the debonded
adherend length (see Fig. 2). Such self-similar or steady state
fracture analyses have found wide applications in modeling the
stresses ahead of a growing crack or debond, such as appear in
Spies’ 1953 classic analysis of peeling tests,16 in Bikerman’s

‡ Note that the symbol E is used throughout the paper to denote Young’s
modulus of the adherend beam/plate whereas Ea is used to denote Young’s
modulus of the foundation/adhesive layer. However the subscript ‘a’ is not used
in the symbols of the shear modulus (m) and Poisson’s ratio (n) of the foundation
layer.
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1958 criterion for debonding,17 and soon thereafter in
Kaelble’s18–20 papers on the stress distributions within pressure
sensitive adhesives undergoing peeling. One interesting appli-
cation to monolithic materials rather than bonded systems was
Kanninen’s 1973 double cantilever beam (DCB) solution,21 in
which there is no separate layer (e.g., adhesive) upon which to
assign a foundation stiffness. Instead, Kanninen modeled the
foundation stiffness based on the contributions of the out of
plane stiffness of the DCB arms themselves by using half the
arm thicknesses to effectively capture the deformation from the
centerline back to the neutral axes. This approach serves as a
basis for many later contributions in the field of structural
adhesives, such as for asymmetric bonded DCB specimens.22

Krenk23 modeled the adhesive layer as a Winkler spring foun-
dation using the ratio of its plane stress modulus and the
thickness in order to account for the compressibility of a thick
adhesive interlayer. Jumel et al.24 used the plane strain founda-
tion modulus to thickness ratio to account for the constraint

effects when modeling a thin adhesive layer. Since Stigh’s 1988
closed-form solution,25 Winkler’s foundation concept has also
been extensively applied to the analyses of the separation/
splitting of adherends using the cohesive zone model (CZM)
methodology.26–31 In CZM applications, the foundation spring
behavior is characterized by a traction–separation (TS) relation,
enabling the quantification of the crack/debond tip process
zone (cohesive zone) size as a function of the geometric and the
material parameters. For a more detailed review of the applica-
tion of Winkler foundation analysis in a family of DCB pro-
blems, the readers are referred to a recent review article.32

We would be remiss in discussing BoEF applications to
adhesion without mentioning the important extension to coat-
ings. Lacking the discrete foundation layer evident in adhesive
bond applications, stress analysis for coatings considerably
softer than the substrate, Kanninen-like assumptions for the
coating have been employed to estimate interfacial peel and
shear stresses in bonded coatings.33 Alternatively, for the case

Fig. 2 Schematic sketches of (a) the peeling of a flexible adherend from an adhesive layer bonded to a rigid substrate – a class of problems16–20 in which
the adhesive layer is modelled as a Winkler spring foundation with the spring constant given by the modulus to thickness ratio of the adhesive; (b) the
problem analyzed by Kanninen21 for fracture in monolithic materials, in which the Winkler spring is characterized by the ratio of the modulus to half
thickness of one arm of the DCB; and (c) the class of DCB fracture problems in which the adhesive layer is modelled using a traction–separation
relation.25,26
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where the coating is much stiffer than the substrate, periodic
wrinkling can occur34,35 under in-plane compression (see Fig. 3)
for both bonded elastomeric substrates and for films floating on
liquid36 supporting layers. For such deformations, the founda-
tion spring stiffness stems directly from Biot’s analysis6

for sinusoidal loading of wavelength x which gives rise to an
effective spring constant of Ea(2p/x). Huang37 contributed
significantly to this subject of surface wrinkling using a rather
rigorous analysis of linear (visco)elasticity to approximate
deformations of the foundation.

3. Classical coupling contributions
and modifications

The ubiquitous applications of Winkler’s BoEF model have
been based in part on the simplicity of the model – that the
restoring force on the beam or plate is linearly proportional to
the deflection at that point only. This simplicity, however,
belies the complications that can arise due to several coupling
effects. Although Winkler’s model is derived and typically
expressed for continuous systems, illustrations show the foun-
dation as a series of discrete axial springs, which lends to the
idea that each spring acts independently of the other. The
Winkler model inherently neglects resistances arising for con-
tinuous foundations from both the spatial derivative of the
deflection, which imposes shear deformation in the foundation
layer (i.e., assumes foundation shear modulus is zero), and the
integral of the nearby deflections, through which foundation
compressibility enters the solution (i.e., assumes foundation
bulk modulus is zero). Kerr provides a formal development of
foundation models38 and also reviews and critiques39 multiple
approaches to include shear coupling to effectively incorporate
the shear modulus of a continuous foundation on the behavior,
including through the addition of either a fictitious pre-stressed
membrane (Filonenko-Borodich foundation)40 or intermediate
beam or plate (Hetényi foundation),3 along with numerous refine-
ments suggested by several authors and illustrated in Fig. 4. For
Pasternak’s41,42 model derived by assuming that the continuous
foundation’s transverse displacements (perpendicular to the
beam/plate on the foundation) and displacement gradients are
large as compared to those of the in-plane displacements,
Kerr39 reports the following expression for the restoring traction
between the plate and the foundation:

q = kw � Gr2w (5)

where G is the shear modulus of a shear-deformable layer
mounted atop the spring foundation. The equation governing
deformations, for a Kirchhoff–Love plate supported on a

Pasternak foundation, derived by Kerr,39 has the term
G

c
r6w,

where c is a constant. However, one cannot deduce from it the
governing equation for the plate when the foundation material
is linearly elastic and incompressible. Kerr also raises the issue
of additional boundary conditions needed for the foundation
shear for the 6th order GDE that results. The Filonenko-
Borodich foundation model, in which Winkler’s springs are
assumed to be connected with a linearly elastic membrane
stretched by a uniform tension T, results in a restoring trac-
tion identical to (5), but with T substituted for G. Schiel43

studied deformations of an Euler–Bernoulli beam supported
on a heavy liquid having surface tension s, and showed that the
reaction traction q is given by (5), with k and effective G related
to s.

Variational methods44,45 do provide a natural means to
include foundation effects, including with shear coupling as
seen in the potential function given as:

P ¼D

2
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where O is the plate mid-surface, G is the perimeter of the mid-
surface, Fz is the vertical force distribution around the edge of
the plate, Ms is the component of the edge moment parallel to
the edge of the plate, and the stress and strain components
in the triple integral are within the foundation layer. Here, s and
n represent directions parallel to the edge of the plate and
normal to that edge, respectively. Minimizing this potential
function with trial functions satisfying the displacement-type
boundary conditions provides approximate solutions to the
problem and permits more general coupling mechanisms to
account for the influence of the foundation.

Vlasov and Leont’ev44 describe several models of a linearly
elastic foundation in which both transverse and shear deformations
are considered. The top surface of the foundation supports the
beam and the bottom surface rests on a rigid stationary flat base.

Fig. 3 Schematic illustration of the application of Winkler foundation in analyzing surface wrinkling under in-plane compression: (a) Biot’s
configuration,6 (b) equivalent BoEF configuration, and (c) wrinkling phenomenon.
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By dividing the foundation into several layers, approximating the
transverse displacement in each layer by a simple (arbitrary) func-
tion of the depth (axial) co-ordinate, and using equilibrium equa-
tions of linear elasticity, they recover all of the foundation models
described above and deduce expressions of constants appearing in
(1), (3) and (4) in terms of Young’s modulus and Poisson’s ratio of
the foundation material. Vlasov and Leont’ev44 state that the
Russian academician Fuss effectively proposed the Winkler
hypothesis in 1801. Jones and Xenophontos45 have provided an
alternative variational formulation of the Vlasov’s two-parameter
model, determined their values in terms of the foundation para-
meters, and have shown that its predictions agree well with the test
results. A recent review of the subject also includes comments on
numerical solution approaches.46

4. Coupling arising from interlayer
incompressibility

For an incompressible, linearly elastic, isotropic material, the
bulk modulus equals infinity and the dilatational strain
vanishes. Thus equilibrium equations of linear elasticity are
modified by introducing and including an indeterminate
hydrostatic pressure which is found by solving the equations
of equilibrium with normal surface tractions prescribed on a

part of the bounding surface of the body. For a linearly elastic
foundation made of an incompressible material, e.g., clay, with
Young’s (or the shear) modulus varying linearly with the depth
from the top surface supporting a beam/plate, Lekhnitskii47

and Gibson48 have independently deduced Winkler’s formula.
In spite of the connection between shear and bulk properties,

however, none of the classic models proposed to incorporate
foundation shear stiffness appear to have addressed the role of
material compressibility for foundations of finite thickness. This is
the situation that arises, for example, with adhesive bonds wherein
the finite-thickness elastomeric layer can be treated as a founda-
tion. For an elastomeric foundation with the shear modulus much
lower than the bulk modulus, the material incompressibility can
play a significant role that dominates for highly constrained
configurations.

4.1 Development of solution based on lubrication theory

Lefebvre et al.49 hinted at this issue when the measured
stiffness of DCB specimens involving steel beams bonded with
a neoprene interlayer suggested discrepancies with their BoEF
analysis, leading them to speculate on the role that elastomer
‘‘incompressibility’’ might play in the analysis. This finding
provided the impetus for Dillard’s subsequent analysis50 in
1989 of a plate supported by a continuous elastomeric founda-
tion. The resulting 6th order GDE built on the 4th order Winkler

Fig. 4 Illustrations of configurations considered for coupled foundation contributions: (a) through addition of a shear deformable layer sandwiched
between plate and foundation, (b) through the use of shear deformable layer between a stretched membrane and the foundation, (c) through the use of a
shear deformable layer suspended by elastic foundations above and below, and (d) through considering the incompressibility of an elastomeric layer,
showing the increasing bulging of elastomer in a differential element when the plate experiences a downward (negative w) displacement (2-D
image only).
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solution to include the coupling resulting from the constraint of
an incompressible foundation layer, where the restoring force
follows the classic Reynolds equation51 for lubrication theory, as
used by Gent and Meinecke52 for elastomers:

r2q ¼ �12mw
h3

(7)

Here the restoring traction q equals the negative of the hydrostatic
pressure within the elastomer, m is the shear modulus of the
elastomer and h its thickness, which is assumed to be significantly
larger than the deflection, w. This equation results from the
equations of motion and the constitutive equation of a linearly
elastic and incompressible material upon applying assumptions
used in lubrication theory.52,53 As opposed to a spring foundation,
which does not take into account any horizontal displacement,
according to lubrication theory the horizontal displacement in an
elastomeric foundation varies in a parabolic fashion through the
thickness of the elastomer foundation, as illustrated schematically
in Fig. 5. The resulting GDE (for general and plane strain or
cylindrical bending) and the characteristic reciprocal length are:

General : r6w� le6w ¼
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d6w
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The complimentary solution for the cylindrical bending problem is:
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In contrast to the Winkler solution, the arguments for the expo-

nential terms and the sinusoidal terms now differ by a factor of
ffiffiffi
3
p

,
meaning that the oscillations decay (from loading point) at a slower
rate compared to the oscillation period, resulting in more pro-
nounced undulations. Because of the non-oscillatory terms, the
distance between the zero-crossing points is not quite constant, but
the characteristic length, le

�1, retains a similar physical meaning

relating plate stiffness to elastomer stiffness. From the expressions
of the reciprocal lengths, lw given in (3) and le in (8), it can be
shown that lw E 0.61a�1/4le, where a = (D/mh3)1/3. The dimension-
less number, a, is commonly regarded as the lateral confinement54

of the elastomer layer. The lateral confinement of an elastomeric
layer may amplify its effective stiffness significantly.

Direct comparison of the Winkler and incompressible
elastomer layer solutions are difficult,55 as differences depend
strongly on the confinement, a. Comparisons of the deflections
and various derivatives, as well as of the lateral deformation
and traction within the elastomeric layer, were given for the
plane strain cases of an applied line load and applied line
moment on an infinite plate.50 These cases are among the
easiest to compare, as the boundary conditions require that
values and derivatives for plate and lateral elastomer displace-
ments vanish at long distances from the point of load or
moment application. Results for the former case for x Z 0
are given below (see eqn (10)), when a centrally applied (x = 0)

line force, Pe ¼
72m
h3le3

for the elastomer model or Pw ¼
2k

lw
for the

Winkler foundation, causes equivalent deflections of w(0) = ŵ.
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MðxÞ ¼ D
d2w

dx2
¼ ŵlj

2Dfj
0 0
xlj
� �

VðxÞ ¼ D
dw3ðxÞ
dx3

¼ ŵlj
3Dfj

0 0 0
xlj
� �

qðxÞ ¼ �D
dw4

dx4
¼ �ŵlj

4Dfj
0 0 0 0

xlj
� �

ue x;
h

2

� �
¼ h2

8m
dq

dx
¼ �ŵlj

5h2D

8m
fj
0 0 0 0 0

xlj
� �

(10)

Here the subscript ‘j’ stands for either ‘e’ or ‘w’, which we have
used, respectively, for the elastomeric and the Winkler founda-
tions, and primes denote differentiation with respect to x. The
last line represents the horizontal displacement along the
midplane of the elastomeric layer (z = h/2), and does not apply
to the Winkler foundation. Fig. 6 exhibits the plots of fj and its
derivatives (in other words, nondimensionalized versions of the

Fig. 5 Schematic illustrating the distributions of vertical and horizontal displacements (nondimensionalized as shown) at a given location in the
elastomeric foundation. The horizontal displacement at the top interface is negligible as a consequence of no-slip boundary condition and neglecting
in-plane displacements on the plate bounding surfaces. Here prime means derivative with respect to x.
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quantities listed in (10)) as functions of xlj for the two founda-
tions. Only the relative magnitudes and decay rates should be
compared, as the axes are normalized by two different quan-
tities for the two foundations because of the fundamental
difference in lj as well as the magnitudes of forces required
to achieve the prescribed displacement, ŵ. Nevertheless, stark
differences are clearly seen for the spatially dependent fj

functions. Behaviors resulting from other boundary conditions
are being explored, along with comparing Winkler approxima-
tions to the elastomer foundation problem.55

Interestingly, a 6th order GDE is obtained for the Reissner
foundation56 and Pasternak’s foundation (according to Kerr’s
paper39) as well. These, however, result from a foundation’s
shear contributions modelled by a fictitious intermediate plate
suspended by two layers of spring foundation, so bulk stiffness
was still not considered. Bert57 extended this analysis to the case
of foundations of arbitrary Poisson’s ratio, noting consistency
with Lefebvre et al.58 for n = 1/2 and with Lai et al.59 for slightly
compressible foundations.

The model in (8) neglects the effects of shear stresses at the
interface on layer deflections, consistent with ignoring in-plane
deflections, as discussed in Section 1. It should also be noted
that this approach effectively assumes that the normal traction
exerted across the plate-to-interlayer interface is equivalent to
negative of the hydrostatic pressure, as appropriate for lubrica-
tion theory. An additional term can be added to reflect the
superposed uniaxial stress,52 resulting from k = Ea/h = 3m/h for
an elastomer:

General : r6wþ 4lw4r2w� le6w ¼
1

D
r2p

Cylindrical :
d6w

dx6
þ 4lw4

d2w

dx2
� le6w ¼

1

D

d2p

dx2

Reciprocal length : le ¼
ffiffiffiffiffiffiffiffiffi
12m
Dh3

6

r

lw ¼
ffiffiffiffiffiffiffiffiffi
3m
4Dh

4

r
¼

ffiffiffiffiffiffiffiffiffi
Ea

4Dh

4

r
(11)

This model should effectively bridge between low and high
constraint scenarios, where Winkler and lubrication theory
models are respectively applicable. The authors are not aware
of this revised form having been reported in the literature.
Allowing for the possibility that D, h, and even m could be
functions of x and y, the general form can also be written as:

12mw ¼ r � h3r Dr4wþ 3m
h
w� p

� �� �
(12)

This is equivalent to combination of the lubrication and buoyant
plate solutions (discussed in Section 5) from the analogous
response of a viscous fluid foundation, with the caveat that once
the elastomer is crosslinked (physically or chemically) at a given
thickness, h, which can vary spatially in the initial fabrication,
becomes a reference configuration. Thus nonlinear effects are
expected to arise unless w { h, a limitation that does not exist
for the analogous fluid foundation.

4.2 Debonding of a plate from an elastomeric foundation

A problem which becomes particularly relevant in soft matter
adhesion is that of debond propagation under the action of
peel stress. When a plate is peeled from an elastomeric layer by
application of transverse load at its overhanging edge, debond-
ing begins to propagate as soon as the interface is stressed
beyond capacity. However, when the confinement parameter
becomes sufficiently large, the onset of interfacial fingering
instabilities is observed at the advancing debond front.60

Although their initial studies of meniscus instabilities used
the Winkler foundation62 concept for establishing scaling
arguments for the finger lengths, Ghatak and Chaudhury indepen-
dently recognized the issues arising from elastomer foundation
incompressibility.54 They subsequently presented their pioneering

Fig. 6 Comparisons of nondimensionalized plate deflection (w̃), the
lateral displacement (ũ) of the mid-plane of the foundation, the slope of
the plate (~y), the bending moment (M̃), the shear force (Ṽ), and the
restoring traction (q̃) provided by the foundation as functions of the
horizontal nondimensionalized distance X from the load application location

(X = 0). Here w̃ = w/ŵ, ~u ¼ u

	
ŵDlj

5h2

8m

� �
, ~y = y/(ljŵ), M̃ = M/(ŵDlj

2),

Ṽ = V/(ŵDlj
3), q̃ = q/(ŵDlj

4) and X = xlj. The inset is a schematic of the
problem for which the results are plotted.
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work on soft matter fingering and instabilities in a series of
papers54,61–64 in the context of displacement-controlled peeling of
a flexible plate from a thin elastomeric layer bonded to a rigid base
as shown schematically in Fig. 7a. While the details of interfacial
stresses near the interface edge/corner65,66 cannot be resolved using
the approximate analysis based on lubrication theory, the assump-
tion of vanishing peel stress at the tip of an interfacial crack64 leads
to a peak in the peel stress occurring at a distance of Ble

�1 from
the edge. This could explain the experimental observations of
internal debonding and the associated adhesion-induced instability
(Fig. 7c) resulting ultimately in the propagation of a convoluted
crack front exhibited in Fig. 7d. Drawing inspiration from the
remarkable adhesive properties of patterned insect toe-pads, they
argued that an adhesive foundation could be micro-structured at a
length scale smaller that the length Ble

�1 to engineer cavity
nucleation and a concomitant increase in the effective adhesion
reflected in the stick-slip behavior in the experimentally obtained
moment–displacement curves. Their findings were further sup-
ported by experimental observations of Chung and Chaudhury.67

In a subsequent study,63 the elastomer foundation analysis was
used in developing a test method to measure the work of adhesion
for an elastomer/plate interface using the similar peeling experi-
ment but without patterns being present at the interface. Disregard-
ing the complex crack initiation mechanism and assuming a
straight crack front for simplicity, the peel stress was set to be
maximum at the edge/corner. They derived for the strain energy
release rate Gc = 9DD2g(a)/2a4 where the function g(a) resulted from
the solution of (8). Ghatak68 extended his analysis of peeling later
to explain earlier experimental findings of adhesion-induced
instability manifested in the form of a fingerlike crack front,54

proving that adding a sinusoidal perturbation to the base solution
obtained using a straight crack front (plane-strain cylindrical
bending problem) resulted in a lower energy configuration when
the elastomer confinement is sufficiently large. Building on
this work, Mukherjee et al.60,65 investigated debonding of soft
matter layers between rigid and flexible adherends (Fig. 7b)
using the CZM, schematically illustrated in Fig. 8a along with
resulting peel stress distribution. It is worth mentioning that
neither of the mechanics of materials solutions63,64 of the
peeling problem captures the singular stress field65,66 near
the interface edge/corner. Also of note is that energetically-
favored debonding (involving discrete or fingering debond
patterns), cavitation, or other void-inducing damage can
significantly relieve the volumetric constraint that necessitates
the 6th order GDE, allowing Winkler’s spring foundation
behavior to effectively be applicable in these regions. A recent
example incorporating a bilinear traction–separation relation
resulted in a 4th order term in the cohesive zone in addition
to the 6th order term which dominantly governed the behavior
of the region over which the elastomer remained intact.65

For cases such as the behavior of pressure sensitive adhesives,
which undergo extensive cavitation and fibrillation within
the debond damage zone, the fibrils may represent indepen-
dent springs, as assumed in Winkler’s solution, though may
reorient substantially, complicating CZM representations.69

Recent papers have addressed buckling of plates on elasto-
meric layers of finite thickness under uniaxial70 and biaxial71

compression.
The effect of compressibility of the foundation has been

recently captured well by an extended Winkler foundation

Fig. 7 Images summarizing works on peeling from a soft elastomeric adhesive layer: (a) a schematic sketch of the experimental configuration for
displacement-controlled peeling of a flexible plate from an elastomeric layer bonded perfectly to a rigid base; (b) snapshots from FE simulation of the
problem conducted using a TS relation to model the interfacial interaction. (c) (left) Schematic of a model to evaluate the fingering wavelength
(or wavelength of instability) on peeling of a rigid contactor from a thin elastic layer bonded to a rigid substrate. (right) Plot of excess energy associated
with the appearance of the instability for single mode perturbation (blue curve) and half rectified sine wave deformation profile (maroon curve).
(d) Fingering patterns emerging in the contact line on removing a thin flexible plate from a thin PDMS sample. Image (b) is reprinted from ref. 60 with
permission from Elsevier. Images (c) and (d) are reprinted from ref. 61 with permission from Springer Nature.
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analysis conducted by Cabello et al.73 They proposed for the
DCB class of problems, a spatially varying Winkler spring
stiffness for the adhesive interlayer, effectively capturing the
transition of the stress state from tri-axial over the inner
portion of the bondline to a plane stress state prevailing near
the free edges of the adhesive layer. Their approximate model,
albeit based on an empirical relation found using an experi-
mental/numerical approach, predicted for two example cases
the internal peak of peel stress that is expected to occur for
confined elastomeric interlayers.

5. Analogous fluid foundations

Winkler’s foundation has been used to obtain a mathematical
formulation for the displacement of elastic plates submerged in
a liquid or in contact with a liquid as early as Hertz’s analysis in
1884.74 Bikerman and Yap75 highlighted the coupling between
the fluid viscosity and the flexural rigidity of a plate during the
peeling from a Newtonian fluid, while Piau et al.76 incorporated
the lubrication effects of the adhesive during steady-state
peeling. More recently, there has been an increased interest to
study detachment from a fluid foundation. This scenario is
encountered in animal locomotion,77,78 printing,79 blister
formation,80 and adhesion54,72,76,81–83 (see Fig. 9). For example,
transfer printing is used to facilitate the addition of semiconductor
inks on a substrate of interest for the fabrication of microelec-
tronic or optoelectronic elements.84–86 The stamp for transfer
printing is made of a membrane that contacts the ink and later
releases it through a pressure difference. As the stamp is slowly
retracted, the membrane peels out of contact with the ink. The
variation of pressure causes deflection of the membrane and can
be modelled as a plate on a fluid foundation, when bending
stiffness dominates. Moreover, the Winkler foundation can also
be used to analyze vibration and structural instability of carbon
nanotubes conveying a fluid87 (Fig. 9b). Interestingly, many elastic
foundation models in contact with a fluid and exposed to vibration
prefer to use Pasternak equation88 because of its simplicity
amongst two parameter models which can better describe the
displacements on the boundary of uniformly loaded surface area.

A large number of animals can climb on smooth surfaces
using adhesive pads, the surface area of which has been found
to depend on the mass of these animals.89 In particular, the
locomotion of tree frogs on wet or submerged surfaces involves
a peeling motion analogous to the one illustrated in Fig. 9a.
Insects have also been shown to secrete adhesive fluids that aid
in their attachment to smooth surfaces.90 These wet biological
adhesives have also been shown to have a rate-dependent
adhesion.91 In general the presence of a viscous fluid founda-
tion brings a purely dissipative, time-dependent aspect, to
adhesion. Moreover, the wide range of adhesion properties
observed with different species of tree frogs correlates strongly
with the compliance of their toe pads,92 which is analogous to dry
adhesion observations as well.93–97 As a result, understanding the
coupling between elastic compliance and viscous forces during
peeling in fluid environments is necessary to comprehend wet
adhesion. Unsteady dynamic peeling from an elastomeric founda-
tion, as studied by Ghatak and Chaudhury,54 was later extended to
the case of wet biomimetic adhesives on structured surfaces63 that
highlighted the contribution of viscous losses to adhesion.

The case of a growing fluid blister is particularly analogous
to the case of elastic foundations (Fig. 9c). The formation of a
blister in a fluid-mediated radial elastic peeling can occur over
a broad range of length scales: from the manufacture of flexible
electronics and microelectromechanical systems (MEMS)100 to
the geological formation of laccoliths formed by the flow of
viscous magma beneath an elastic sediment layer.101 Delami-
nations of an axially compressed sheet from a fluid interlayer,
analogous to fracture or debonding with solid interlayers, are
also possible.102 During the formation of a blister (see Fig. 9c) a
viscous fluid is pumped beneath an elastic sheet. The propaga-
tion of the viscous fluid depends on the dynamics at the peeling
front of the elastic sheet and affects the shape of the blister.103

In this scenario, the rate of change in deflection of the elastic
sheet depends on the coupled effects of viscous forces of the
fluid and the bending and tension of the elastic sheet,80,101

leading to:

12Z
@w

@t
¼ r � w3r Dr4wþ rfgw� p

� �
 �
(13)

Fig. 8 Deviation from linear models suggested above when damage occurs: (a) sketch of edge debonding in peeling of a thin flexible plate from an
elastomer layer, along with various zones near the debonding tip B after the debond has moved the corresponding contact opening (displacement jump)
profile along the x-axis; and in (b) illustrating peeling of a viscoelastic pressure sensitive adhesive with typical variations of the peeling force F and of the
adhesion energy G with the peeling velocity V. Ldr is the characteristic extension of the debonding region, where the adhesive is significantly strained.
Image (a) is reproduced from ref. 65 with permission from ASME. Image (b) is reproduced from ref. 72 with permission from The Royal Society of
Chemistry.
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where Z is the fluid viscosity, and w is the deflection of the plate
as before. However, the deflection is taken to be zero when this
plate is in contact with the substrate, so is a direct measure of
the thickness of the fluid layer. This is very similar to (12), but
without the limitation requiring limited thickness variations, as
was the case for a crosslinked elastomer. The 6th order GDE (13)
again arises from the mass conservation applied to the incom-
pressible fluid within the lubrication theory approximation (i.e.,
the deflection of plate is much smaller than the lateral dimen-
sions). The relationship between the fluid flow rate and its
hydrostatic pressure gives rise to a fourth derivative of the deflec-
tion of the elastic plate. Additionally, the interfacial crack initiated
by the pumping of a finite volume of liquid can equilibrate at a set
blister radius and height. Adhesion energy of thin films can be
evaluated using such experiments as shown in a recent study.104

Investigations of the coupling between lubrication forces,
compliance, and surface topography have also been performed
for unsteady peeling in fluids of different viscosity.99,105 Here
two small plates are separated by a fluid film and the distrib-
uted pressure causing the adhesive force is the lubrication force
over the nominal length of the plate being peeled (see Fig. 9d).
The flexural rigidity, the transverse (out-of-plane) extensional
compliance of the plate, and the fluid viscosity all increase the
maximum debonding force and energy release rate. There is a
competition between the relative importance of the flexural
rigidity of the plate and the viscosity of fluid on the detachment

force. For insects adhering to surfaces in low viscosity fluids
like water, the flexural rigidity of their toe pads would be
expected to play a more important role in adhesion rather than
the dissipative viscous forces caused by fluid infusion. In
addition to flexural rigidity, the extensional compliance of the
elastic plate can also compete with viscous forces.99

6. Compilation of models

Table 1 summarizes the range of plate solutions that have been
proposed and used, building on the original Winkler founda-
tion. As mechanics of materials level solutions, all involve
certain assumptions, including quasi-static loading conditions
and the requirements of Kirchhoff–Love plate theory that
normals remain straight and normal to the mid-surface, line-
arly elastic (or viscous for hydrodynamic) behavior, and that
strains, displacements (w o t), and displacement gradients
(|rw| { 1) are all small. In addition, requirements for validity
(explicitly given in Table 2, along with their justification) have
been added, though explicit magnitudes for the inequalities are
not given, and would likely require computational resolution
and could be complicated by coupling effects. As an example,

however, Goland and Reissner11 require that
Ea

h
� E

tp
to ensure

that the plate thickness changes are negligible, then suggest

Fig. 9 Applicability of Winkler’s analysis for fluid foundations. (a) Morphology of tree frog toe pads showing a microstructure that consists
of an epidermis with hexagonal epithelial cells. Secretion of fluid can mediate adhesion between tree frog toe pad and the contacting surface.
Moreover, infusion of external fluid may also occur during detachment of tree frog toe pad in a fluid medium. Adhesion can also be affected by
fluid trapped within gaps between hexagonal structures or between the toe pad and contacting surface. (b) Schematic of a carbon nanotube conveying
fluid on a viscoelastic Winkler foundation for applications of CNTs as nanocontainers, nanopipes and nanothermometers. (c) Schematic of the forma-
tion of a fluid blister caused by an influx of fluid generating a radial peeling front. (d) Schematic of peeling experiment where contact and detachment
happen in fully submerged conditions. During peeling, a rigid contactor lifts one end of the top plate, causing detachment with a small (o51) peel
angle. Image (a) is reproduced from ref. 98 with permission of The Royal Society. Image (b) is reprinted from ref. 87 with permission of Elsevier. Image
(c) is reprinted with permission from ref. 80 r (2013) by the American Physical Society. Image (d) is reprinted from ref. 99 with permission of AIP
Publishing.
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that 10
Ea

h
o

E

tp
is appropriate for single lap joint (with flexible

adhesive) analysis. Using finite element analysis, Adams and

Peppiatt106 suggest this can be relaxed to 3
Ea

h
o

E

tp
without

significantly reducing accuracy.

7. Conclusions

This review is meant as a tribute to Emil Winkler and a
recognition of the significance of his 1867 beam on elastic
foundation (BoEF) formulation for the field of mechanics in
general and adhesion science in particular. Numerous

Table 1 Summary of the general plate on the Winkler foundation and various extensions

Formulation
source Restoring force

Characteristic
reciprocal
length Governing differential equation Notes and assumptions

Föppl
(1922)10

based on
Winkler
(1867)1

q = kw
lw ¼

ffiffiffiffiffiffiffi
k

4D

4

r
r4wþ 4lw4w ¼

p

D
Original formulation for beam on elastic
foundation extended to plates; assumes
independent spring support; [1], [2], [3], [4]

Hertz
(1894)74

q = rfg w
lw ¼

ffiffiffiffiffiffiffi
rfg
4D

4

r
r4wþ 4lw4w ¼

p

D
Solution for a plate floating on a fluid (suffi-
ciently thick to avoid hydrodynamic effects); [2],
[4], [5]

Filonenko-
Borodich
(1940)40

q = kw � Tr2w
lw ¼

ffiffiffiffiffiffiffi
k

4D

4

r
r4w� Tr2wþ 4lw4w ¼

p

D
Assumes uniform equal biaxial tension of T [1],
[2], [3], [4]

Hetényi
(1946)3

q = kw + Sr4w
lw ¼

ffiffiffiffiffiffiffi
k

4D

4

r
(D + S)r4w + 4Dlw

4w = p S represents plate rigidity of a fictitious
coupling layer [1], [2], [3], [4]

Pasternak
(1954)42

q = kw � Gr2w
lw ¼

ffiffiffiffiffiffiffi
k

4D

4

r
r4w� Gr2wþ 4lw4w ¼

p

D
G is the shear modulus of a ‘‘’shear layer’
element’’ [1], [2], [3], [4]

Dillard
(1989)50 r2q ¼ �12mw

h3 le ¼
ffiffiffiffiffiffiffiffiffi
12m
Dh3

6

r
r6w� le6w ¼

1

D
r2p

Uniform plate on (incompressible) elastomeric
foundation; assumes hydrostatic stresses within
the elastomer layer; [2], [6], [7], [8], [9], [10]

Michaut
(2011)101 r2q ¼ rfgr2w� 12Z

w3

@w

@t lw ¼
ffiffiffiffiffiffiffiffiffiffi
3Z
4Dw

4

r

le ¼
ffiffiffiffiffiffiffiffiffi
12Z
Dw3

6

r
12Z

@w

@t
¼ r � w3r Dr4wþ rfgw� p

� �
 � Includes buoyant and hydrodynamic effects;
allows for spatially varying plate stiffness and
fluid thickness; w represents (incompressible)
fluid layer thickness; [2], [5], [8], [9], [10], [11]

Present work r2q ¼ 3m
h
r2w� 12mw

h3 lw ¼
ffiffiffiffiffiffiffiffiffi
3m
4Dh

4

r

le ¼
ffiffiffiffiffiffiffiffiffi
12m
Dh3

6

r
12mw ¼ r � h3r Dr4wþ 3m

h
w� p

� �� �
Relaxes [9], effectively allowing vertical stress
difference within incompressible elastomer
layer and spatially varying plate stiffness and
foundation thickness; [2], [6], [7], [8], [10]

Table 2 List of assumptions and requirements for validity, along with their justification

# Relationship Justification

[1]
k� E

tp

Stiffness of foundation is much less than out of plane stiffness of plate (to change in thickness)

[2]
tp �

1

lw
Plate thickness is small compared to characteristic length; needed to assure a normal remains straight and
normal

[3] n = 0 Poisson’s ratio of foundation is negligible; eliminates dependence on integral of neighboring deflections
[4] m = 0 Shear modulus of foundation is negligible; eliminates dependence on derivative of neighboring deflection
[5]

rfg�
E

tp

Same as [1]

[6] ma
h
� m

h3le2
� E

tp

Stiffness of foundation is much less than out of plane stiffness of plate (to change in thickness)

[7] jwj � h;
dw

dx

����
����� 1 Required for elastomeric solid to satisfy small strains, but (interestingly) not for hydrodynamic condition

[8]
tp �

1

le
Plate thickness is small compared to characteristic length; needed to assure a normal remains straight and
normal to mid-surface

[9]
h� 1

le
Required to maintain that hydrostatic component of foundation stress is dominant

[10] m
h2le2

� K Ensures volumetric strains in foundation are negligible compared to displaced volume (K is bulk modulus of
foundation)

[11] Z
w4le2

@w

@t

����
����� E

tp

Same as [6]; derivable from Stefan’s adhesion
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applications are discussed, providing some historical perspec-
tive for the classic Winkler analysis relevant to flat and tubular
single lap joints, adherends with curvature mismatch, and
fracture analysis of monolithic and adhesively bonded joints.
These classical applications to adhesive bonds have typically
neglected coupling effects within the foundation layer used to
model the adhesive, effectively treating foundation displace-
ments as being independent of nearby deflections. Although
there is a rich body of literature addressing a wide range of
shear and other coupling behavior, the unique constraint
imposed by elastomer incompressibility lends itself to an
analysis based on lubrication theory, resulting in a 6th order
governing differential equation rather than the traditional 4th
order Winkler model. This approach has been widely used in
modeling a host of soft matter adhesion issues. The same
formulation is applicable not only to elastomeric materials
with elastic response, but also to fluids with viscous behavior,
opening up further applications to wet adhesion with liquid
interfaces. Indeed, the simple mechanics of materials solution
provided by Winkler, along with its numerous extensions, has
clearly made a profound impact on the mechanics of adhesion
and soft matter debonding.
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